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ABSTRACT

Four new methods of synthesis ef nonuniformly spaced antenna
_arrays are given: ‘ :

I. 'The mechanical quadratures metlod, developed recently by
Bruce and Unz and independently by Lo.

II. The eigenvalues method,
- III. The expansion method,

IV. The orthogonalization method using the Schmidt's procedure,
An exponential-decay directive p.attern is suggested in order to

avoid numerical integrations. A summary of the research work in non-
uniformly spaced antenna arrays is given,
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NEW METHODS FOR SYNTHESIS OF
NONUNIFORMLY SPACED ANTENNA ARRAYS

1. INTRODUCTION

The importance of directivie antennas was realized in the early days
of radio communications, The principles of wave interference, on
which systems of directive radio are based, has been known probably
for several centuries. However, the first thorough treatment of this
subject was conducted by Huygens and by Fresnel, who established the
wave theory of light in the early part of the nineteenth century,

During the decade 1920-1930, a concentrated effort on directive
properties of antenna arrays was started. During this period short-
wave ‘adio communications were becoming more popular, taking the
place of long radio waves, and the use of antenna arrays of reasonable
size became more feasible.

In 1937 Wolff! published his method of synthesizing any arbitrary
far-zone circularly symmetric pattern with radiators uniformly distribu-
ted along an array axis. His theory was based upon comparison of the
far-zone field of a pair of radiators to a term of the Fourier series ex-
pansion of the prescribed pattern.

During the second world war, the invention and the use of radar
increased the interest in directive arrays. In 1943 Schelkunoff? util-
ized the correspondence between nullg of the pattern of a linear array
having equidistant elements and the roots of a polynomial in the complex
plane. Different types of pattern variations were derived by choosing
different distributions of the zeros of the polynomial,

In 1946 Dolph® devised a method of synthesizing an optimum pattern
of isotropic elements equally spaced in a uniform broadside linear array,
in which the elements are fed in phase and are symmetrically arranged
about the center of the array. The resultant current distribution across
the array is based upon the properties of the Tchebyscheff polynomials
and offers, from the design standpoint, much greater control of the
pattern than previous theories.:
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Woodward® and Lawson® gave a method for calculating the field
over a plane aperture to produce a given polat diagrain and discussed
the theoretical precision with which an arbitrary radiation pattern may
be obtained from an array of finite size. This method is based on the
idea of matching the radiation pattern of the aperture at a finite Aumber
of directions with the prescribed radiation pattern.

Van der lMaas,"‘ gave the ideal Tchebyscheff space factor corres~-
ponding to a continuous source of finite length, in the following form.:

{1a) F(0) = cos{m \ ' u? - Az‘)’

22
— sin 0

(1b) u

where 2a in the length of the line source, \ is the wavelength, and 0 is
the angle from the normal to the antenna axis. F¥rom the above it can
be found that:

(lc) ch(mA) = side lobe ratio,

By using Fourier integrals, Taylor? showed that the aperture current
distribution required in order to produce the ideal radiation pattern in
Eq. (1) is:
L(A\w® - p*)
, nA? S—
(2) g(P) = 2 Lt

A _n,z - pz

1l .. 1 2 z
t7 sp-m+386(+w), p°<w

S(P) =0, Pz >t
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where p = %"—‘ , &is the Dirac delta function, and I‘: is the modified

Bessel function. This pattern was considered later by Taylor® from

the complex function theory point of view. Because of theoretical limi~
tations, the above pattern cannot be obtained from a physically redlizable
antennasbut its ideal characteristics can be approab‘hed‘ arbitrarily
closely. Co

Cheng and Ma?? proposed a new approach to the uniformly spaced
lihear-array analysis. They considered the current distribution in
the discrete elements of the linear array as the sampled data values of
a continuous function, and used known relations in Z transforms devel-
oped for sampled-data systems in order to expres‘é the array poly-
nomial in a closed form, where the array properties are easily found.

In all of the above cases, the spacings of the array elements are
assumed to be uniform. In 1956 Unz? 1911 first introduced linear
arrays with arbitrarily distributed elements and developed a theory for
them. A relationship between the currents in the elements of the array,
their distribution along the axis of the array, and the coefficients of the
complex Fourier expansion of the radiation pattern were given in a
matrix form which involved Bessel functions., It was pointed out that a
nonuniformly spaced antenna array has more degrees of freedom than
a similar uniform array with equally spaced elements, and as a result
its performance should be better,

Further numerical work on the subject has been done by King,
Packard and Thomas! 2, who showed that nonuniform antenna arrays

"~ with unequally spaced elements are also more broadband for different

source frequencies, This is espegially useful because of the earlier
development of frequency-independent antenna elements by Rumsey,
DuHamel, Isbell, and others!3, Sandler!* showed some equivalences
between e« 'ally and unequally spaced arrays.

Andreasen! ® and several of his associates did extensive numerical
work on digital and analog computers in order to find the general be-
havior of the radiation patterns of nonuniformly spaced arrays, in par~
ticular when the average spacing is larger than one wa relength. Swenson
and Lo!' % considered the use of nonuniformly spaced arrays for large
radio telescopes. Harrington!” used perturbational procedures for
reducing the side-lobe level of a nonuniformly spaced array with uni-
form excitation. Extensions of the previous théory to dipole elements

S S P
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in the Fresnel zone! &, and to nonuniform spacings larger than one
wavelength! ?, were given by Unz, Bruce and Unz?9 gave a possible
condition for broadbanding, Maffett?® discussed array factors with
a nonuniform spacing parameter by using well-known numerical inte-
gration techniques (trahezmdal, Simpson), and considered a statistical
theory. Yen and Chow? 12 gdiscussed the possibility of expressing the
radiation pattern of large nonuniformly spaced arrays in closed form
by using integration by stationary phase technique.

Pokrovskii? * désigned a 4~ and 6~ element array having nonuni-
form spacing and uniform excitation of the elements, with improved
patterns over the Dolph~Tchebyscheff array for the same length and the
same number of elements. While his method of golution is general,
the transcendental equations become more and more involved for larger
arrays., Additional discussion has been given by Brown3*.

Nonuniformly spaced arrays have several advantages over uni-
formly spaced arrays; namely, their performance can be better, fewer
elements can be used, and they are more broadband. However, non-
uniformly spaced arrays are seldom used in practice at present, Be-
sides being latecomers, the great difficulty in synthesizing such wrrays
seem to be the main reason for the hesitancy to use them,

Recently a new method of synthesizing radiation patterns using

nonuniformly spaced arrays has been developed by Bruce and Unz? 3° 24,

They applied a mechanical quadratures formulation in order to trans-

form a continuous aperture distribution to a nonuniformly spaced array.

Because of its importance, a summary of this work will be given in
Section 3 of this paper. Some work along similar lines has been done
independently by Lo? %

The aim of this paper is to give new methods for synthesis of non-
uniformly spaced antenna arrays. It is hoped that these new methods
will be found useful in the d‘ejsign of nonuniformly spaced arrays and
helpful in achieving the general use of their full potentialities.
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2. THE EXPONENTIAL PATTERN

One of the possible directive radiation patterns with »exponentiél
decay, which will be used later on, can be written in the form:

-a? sin* @ A
{3) . F@)=e " " " cos (2b sin )

where 8 is the angle of the radius vector from the normal to the array
axis, and "a', 'b''are arbitrary constants. The maximum value of the
pattern in the direction normal to the array axis is normalized, F(0)=1,

The first null of the radiation pattern will be at 8 = 6 o such that

T,
(4a) 2b sin 90 = 3

and the beamwidth w between the first nulls will be W, =2 90; one
obtains, therefore,

hig
Wo
4 gin 2

(4b) b

Using Eq. {4b), the constant '"b' can be determined if the beamwidth
between the nulls W is specified.,

Assuming the first side-lobe maximum of the radiation pattern to
be at 8 = 8, , then the side-lobe level M of the radiation pattern will be
defined by:

(5a) M = F(0) ! eaz

B 'I‘F(‘e,i‘)“]' ) I‘F(Ql‘)l ) lc;)s (2b sin 91")"

sin? 8,

The side-lobe level in decibels Mdb will ba then:
(5b) Mgp =20 log M =
= 20 [a? sin® 8; loge - log |cos (2bsin8y) ].

5
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In order to find the position of the first maximum, one should solve
F'{8,) = 0. Using Eq. (3) one obtains:

b sin(2bsin®;) + a? sin®, cos (2bsinB) = 0.

Using the notation o = 2bsin®, one gets:

6 _..._..—tga = - a_z
(6) a 262

Using Eq. (6) and the same hotation, Eq. (5b) becomes:

(7) Mgy

S -~ 0.217atga -‘1ogl‘cos;a|‘

Equations {6) and (7) may be used in order to find the relationship
between the constants '"a', '"b', and the side~lobe level Mdb’ and the
results are shown graphically in Figures 1, 2, 3.

The required radiation pattern is given usually in terms of its
beamwidth w_and the side~lobe level My,. From Eq. (4b) the constant
b of the radiation pattern can be found from the beamwidth w_. For
a given side-lobe level Mdb,the. transcendental equation (7) can be
solved for o, This could be accomplished simply by using Figure 2,
Then Eq. (6) and the value of the constant '"b" should be used in order
to find the constant "a', Figure 1l could be helpful in this case, Figure
3, which is a combination of the previous figures, gives a direct rela~-
tionship, in a graphical form, between the side-lobe level M, and the

a2
constant SHZ

We have seen that if the beamwidth w_ and the side-lobe level Mgy
are given, the constants "a', "b' may be found and the directive, ex-

ponential-decay radiation pattern in Eq. (3) will be completely specified.

3. MECHANICAL QUADRATURES METHOD

Recently a new method of synthesis of nonuniformly spaced linear
arrays has been developed by Bruce and Unz? 3,24 and independently
by Lo? . They applied mechanical quadratures? é

.. PR M e A e e e = B i i i b o o ek g e v e i

in order to transform
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a continuous aperture distribution to a nonuniformly spaced array,
Beécause of its importance, a summiary of this new method 23,24 ig
presented here,

o i e

Using weight functions, the general form of mechanical quadra=

: tures?® b is given by:

? 41 n

| (8) S w(x) £ (x) dx = z Hj fay) -
: -1 jf':i“l

The n values of aj are real, distinct, within the interval (-1, +I), and

are the roots of a polynomial orthogonal with respect to the weight
function w{x) on the interval (~1, +1). The n values of H. are real,
positive, and can be determined by solving the set of linear equations
generated by letting f(x) = %X for k = 0, 1, 2+ 2n -1, The only re-
quirements on the weight function are that it does not vanish within the
interval of integration and that it is integrable.

et wta n g— g ¢

For a finite aperture with symmetric excitation, the radiation
pattern can be written as: '

+1
{9) F(u) = S‘ g(x)cosuxdx
-1
where the aperture length has been normalized, u = = sin6, and x is

the distance from the origin measured in half wavelengths,

Comparing Eqs. (8) and (9), and taking the weight function to be
' equal to the aperture distribution w(x) = g(x), one obtains: ‘
S
‘ %

:

n
(10) F(u) = Z Hj cos (u'-aj) .
=1

Equation (10) is identified as the nonuniform symmetric array radiation
pattern, where the element positions are given by the n values of a, and - '

the current excitation coefficients are given by n values of H.,

10
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In case of no wéirght f_unctibx’i, wix) =1, Eq. (8) becomeés:

+1 )
A R L

"and as a resﬁlt, Eq. (10) becomes:
n :

(12)  F) = ) Hyglagcos ay) .
j=1

Bruce and Unz? 312 % applied this method to the exponential direc-
tive radiation pattern described in Section 2, as well as to the Dolph-
Tchebyscheff pattern,with very good results. In the case of the ex-
porential pattern, by taking the weight function to be w( ) = e"* one
finds the values of a; and I—)’.J to be tabulated? ¢,

The basic requirement for the mechanical quadratures method is
the knowledge of the aperture distribution g(x) in Eq. (9). If the radia~-
tion pattern F(u) is prescribed, g(x) could be found sometimes by using
the inverse Fourier transform, as for the case of the exponential pat-
tern? 3: 24 in Section 2. Sometimes the aperture distribution g(x) may
be found by taking the envelope?’ of an already designed uniformly-
spaced array, as for the case of the Dolph-Tchebyscheff pan:t:ernz 324,
In both casess the current at the aperture edge will give difficulty, as
can be seen in Eq. (2), for example, and should bhe discussed separ=-
ately®, 28,

For the design of a general prescribed radiation pattern,; the diffi-
culties of this method are twofold: (a} To find the aperture excitation
from the prescribed radiation pattern by a Fourier integral; (b) Approxi-
mating the aperture excitation by a polynomial, a process which will
involve the inversion of a matrix, However, for directive patterns
certain short cuts in the process have been shown above.

1
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4, EIGENVALUES METHOD

A symmetric, nonuniformly spaced anténna array will give the
radiation pattern: o

L

{13) F(u) = Z Al‘ cos~(‘ux‘£)‘,
=

0

where u = 7r5in@, 6 being the angle with the normal to the array axis,

and x, is the distance from the center, measured in half wavelengths,
In Eq. (13) the radiation pattern F(u) is given and the array element
distribution xy and the element amplitudes A, have to be determined,
Let us discuss the integral:
+or
(14a) I(x‘ ;‘xm)‘ = 5 cos (u xl,) cos (u xm) du.

avid

When Xy = X, one obtains:
sin 2 Xy

By using trigonometric identities Eq. (14a) becomes:

sin (xy + xm)vﬂ sin (x’c - Xm)"fr

I{xp; % ) = ‘ + ,
£%m) = 4, Xy = *m

Equating the last e xpression to zero leads to:
(xl - x_ ) sin (xt + xm)‘""'(x[ +xm)‘ sin (xl - xm)w = 0,

1

12
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Rearranging,

xl [ sin (x ! + X)) mtsin (‘xl - ¥ 0w =

= x . [ sin(x, # Xy ) m - sin{xg - x )yl .

Using trigonometric identities, one obtains finally:

(14c)  (%ym)tg (xgm) = (Xpy 88 (xpym)

It is found that for the eigenvalues of Eq. (l4c), the integral I (xl,;;xm);

in Eq. (14a) will have orthogonality properties such that:

si»an‘ﬂ
(144) I(xpix ) =nf 1+ - ] 6
L' *m 2 %, 7 L,m
. /X
where

8pom = { Lt Fm
is the Kronecker delta,

From Eq. ()“.; for the eigenvalues one can see that all the posi-
tions of the radiating elements are determined by the position of the
first element with respect to the rmiddle of the array. In order to in-
clude the first eigenfunction in the complete set, the first element
position should be 0 < x_ < 1; in other words, the distance between
the two innermost elements should be smaller than one wavelength, The
eigenvalues in general are unequally spaced for small values and are
almost equally spaced, a half wavelength apart, for large \{alizes.

Using the orthogonality properties in Eqs. (14) one may obtain
from Eq. (13):

p ‘ 1 sin le T -1 ‘ +7; |
(1.5) Al == [1+ ——] F(u)cos (u xl) du,
.2?‘171?

“m

13

T st Kt ok e S A o s A L,




L e e

A B e e B crmie

-l

©n b S nionss e £ ] RO

oy —— S . o ¢ el Ly o
g S A & e .z

. Thus, one could get a nonuniformly spaced array which will produce

any required radiation pattern. Its element distribution will be deter-
mined by Eq. (14c) and the currents will be détermined by Eq. (15).

For the particular case of the vexpohentia*]j pattern, Eq. (3) may be
rewritten: ' '

2
-a 2
gl ,
(16) F(u)=e T cos (—2—2 u)
17

(PR

where u = g sin@. Substituting Eq. (16) into Eq. (15) and using trigo-
nometric identities, one may obtain definite integrals, which may be
evaluated approximately?? for a > 2:

AT m——q
(17) g e ™ cos (2pu)

al yis
- o o o

cos (2pu)du= 52 ©

b+’72‘r‘x, b-lzT' x,
sin 2% - { l)z - ¢ ‘)z
a " a
\ . Tirq 4 —5g=—1=1
(182) A, = }g [1+ 2%, 17 e +e 1,

or in alternative forms:

- LI -1 a "\ 2a mX
(180) A, = S[1+ 2%, 7 ] (?_1).
14

s = i
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Equations (18) give the curreni distribution of an antenna array which
produces the exponeéntial r.‘a;di;&tion pattern in Eq, (3) or (16), and the
elements of the array are disiributed according to the eigenvalues of
Eq. (l4c). ' '

From Eq. (18a) one can see that for

N

(19) E Xy > a+b

the value of A quickly becomes very small, and the contributions of
these terms to the radiation pattern are so small that they could be
neglected, Equation (19) gives an.indication ¢f the number of elements

required to produce the exponential pattern within a cértain approxi-

mation.

For the particular condition of uniformly spaced-arrays, one could
distinguish between two cases: ’

A. Odd number of elements:

In this case x, = 0 and from Eg. (14c) one obtains x, = £. Equation
- 0 [/ :
( 15) becomes then: i "

. ' 1 tr
(20a) A =-= S
: Lo

F(u)cos (Luv)du 21> 0
). ,

1 ptmo
(@) Ag = § F (o) du .
-1

B. Even number of elements;

oo

; 1
In this case x, =5 and from Eq. (l4c) one obtains X, =8 +5.

Equation {15) becomes then:

1 ot 1
(21) Al = "7; § F (u) cos (£ +"2‘f)‘udu
Bl
15
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and the relationships for the exponential p‘a‘tzt"er,n_ shoiild be changed
accordingly.in Egs. (18).

L

In the last two methods of Sections 3 and 4 the positions of the
array elements have been determinred during the synthesis procedures,
These methods will fail in general when the element“p‘ositio'ns are pre-
assigned. In the next two sections we will discuss c¢ases of this kind.

5, EXPANSION METHOD

When the radiation pattern F (u) is given and the nonuniformly dis-
tributed antenna array element positions are preassigned, the determi-
nation of the currents A in Eq. (13) is relatively difficult, The reason
is that one is required to expand a given function in termis of a non-

: orthogonal set of functions. This problem has been discussed by Kan~
. ‘ torovich and Krylov3?,

One possible method of evaluating the coefficients A, in Eq. (13)
will be to take any complete set of functions {wm (u)}, multiply both
sides of Eq. {13) by y,,(u) and integrate. One will obtain then a system
of equations:

‘ L
“ (22a) } c; -Ay=b - - m=0, 1, 2L

£, m
=0

where: - ..

' (22b) ¢ '=S cos (ux,)y__ (u)du

e
it

+7
(22c) m S F(u) g, (u)du
=

“ where ¢ and b __are known and A, is to be evalvated by solving
£,m m . 2

(L + 1) linear equations with L + 1 unknowns,

16
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It will be useful to indicate also anotlier method of obtaining sys-
tem (22a), which is doubtless even more convenient. Let us expand
Eq. (13) in terms of any orthonormal system Y (). Let:

o]

(23a) F(u) =<z b Vi (8)
m=0 ‘
(23) cos (uxy) => Cy ‘,m?,l/m ()
m=0

where b _ is given by Eq. (22c) and‘—cz m 18 given by Eq. {22b). Sub-

2
stituting Eqs. (23) into Eq. (13) and equating coefficients ofy (u) in both
sides, one obtains Eq. (22a). We note that the second method of ob-
taining system (22a) presupposes, as distinct from the first, a system
of functions Y, (u) that is orthogonal and normalized.

One possible such set is ¢_{u) = cos mu. This set will have a
definite advantage, as Eq. (22a) will be simplified considerably if some

of the elements of the array are uniformly distributed at multiples of a

half wavelength.apart. Also, the integrals (22b) are readily available.

The above method could be extended to the case of asymmetric
nonuniformly spaced arrays:

L iux,
(24) ~F(u) =§ Ay e

£=0
One could take then y _ (u) = e ™Y, Repeating the above process, one
will obtain:
(25a) §( cl,mﬁ =b m=0,1, 2L

£=0

ot iuxy, imu sinq (x, +m)

(25b) 'Cl,mz'S € e du=2 ..
. =T ) W(xl +m)

17
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In this case, in general, b and A, will be complex and one shtould take
both +{m) and - (m). The theory éeveIOped by Unz?! %!l originally is a
particular case of the method described in this section,
6. ORTHOGONALIZATION METHOD

In order to expand an arbitrary function in terms of a nonorthogonal .
set of functions, the orthogonalization procedure by Schmidt may be
used., This procedure has been discussedin detail by Kantorovich and
Krylov3?, and its details for ¢complex functions may be found in Appen-
dix A of the present paper.

It may be shown®? that from an 1nf1n1te set of nonorthogonal complex.
functions:

oy {u), ¢z (u) -
an orthonorimal set of functiong
Yr(w), go (9) o

may be derived by using the relationships:

‘ ‘ o1 (1)
(26a) ¥ (u) = - "
Lg‘ o1 (u) ¢¥(u) dul
a 3
N b
i1 (%) E <§ one1 ¥ 49) ¥ ()
y ! j*: 1 a .
(26b) wh"'l (u) = P n b . 1
S‘a I'¢n+1(u) -E (ga Op4 w;‘d“)"l’j,(“) |2 dub 2

j=1

where AA* = l‘AI?' . .The orthonormal functions ¥, (u), ¥3(u), *** ¥, 4(u)
may be found in succession.

18
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The orthonormal set wn’(u{)_““obey‘s:

b | ‘ 1 £ =m
a ¥ : { £ Fm

et us assume that a set of nonorthogonal functions is given by: |
(28) RGO S\ ‘ n=1,2, L

where x; < x, < %3 < **° < X1 We would like to orthogonalize this
set of functions, in the region (-, +7), where the orthonormalset.will
be denoted by ¥ _(u). From (28) and (26a) oné obtains:

1 ixl w

(292)  yy(v) = il

Let us define the following function:

o
(29b) S el -xmlug, o

where S‘l..l = 1.

Using Eqs. (28), (29), and Eq.. (26b).for n = 1, {ohe)obtains: ,

A%, u
1 e 2 'S]z,'é

. ; — T
N [1-8%,]2

ix;u

(299 * ¢z (u) =

19
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Similarly, one may find in Eq. (26b) after rearranging:

(299 gy () =

L (1-8% )el Mo (S5, 51,8150t X2 - (5, -5,,8, 5)e 1P
55 11 oaz 1510 a2 PR S S
am [1-82,12 [1-8},-513-8;3 +25,,5,35,:]2

By continuing the above process in Eq. (26b) one may find formally:

(29¢)  Yalu) = ¢, ($lgizu, o () glxzu ¢ (4) i %0 C}“‘) REA

or in general:

n,
(29f) Yo lu) = E C;n‘) e.ixlu

=1

where the constants c(ln) may be found by the Schmidt orthogonalization
procedure describedabove.

In the case of a general, asymmetric nonuniformly spaced array,

one has:

L
(30) . F(u) = E A, ¥t
1=1

Taking the orthogonal set of functions wn(u)s described in Eqs. (29 ) one
could expand: ‘

(31a)  Flu) = By, ¥ (w)

20
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where, using the orthogonality relationship in Eq. (27), one can find:

. o
(31b) Bn ='S F(u) W:} (u)ydu .

=T

Since F(u) is prescribed, Bn may be evaluated from Eq. (31b) using
Eqgs. (29). ‘

Substituting Eq. (29f) into Eq. (31a) one obtains, after rearranging:

{32) F(u) = E E B¢ [(n)‘ ex Xgu
n=l f=1 ’

Comparing Egs. (32) and ( 30 ) one obtains:

(33) A, =B, {4 B, o )am, e B Y

(33b) A, = B, i) 4B, ¢, ®la B M
(33c) A, = B, cf*) 4o By i
o ‘;N.:. e e e e ;NCS\U

By using the above procedure one can see that in principle the non-
uniformly spaced array : ~n be designed as well as uniformly spaced
arrays without using the process of inversion of large matrices. The
process of finding the orthogonal set of functions in general is rather
involved algebraically, but they could be found with the help of a digital
computer using the successive process described by Eqs.(26), In gen-
eral the result will correspond to the radiation pattern within a certain
approximation, rather than be equal to it,

The great importance of this process of solution of nonuniformly
spaced arrays is that it is especially designated for asymmetric non-
uniformly spaced arrays, which have more degrees of freedom than
symmetric nonuniformly spaced arrays., Of course, symmetric arrays
also can be designed by using this method.

21
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For the case of an exponential pattern de;s“cri:bed in Section 2, one
is able to use Eqs. (16) and (17) in order to integrate in Eq. (31b) and
find the corresponding coefficients B .

For the particular case of uniformly spaced arrays with % spacings,
one will have in Eq. (29b): :

(34a) x, -x_=L-m;

and Egs. (29) become:

- I iu
(34b) Yalu) =i @
Jzr
(34c) Y, () = 1__» S2u
om
(34d)  Yy(u) = -t o' 3Y
~ ‘;277
(34e) Y (u) = 1 éinu

Jen
and Eqs, (31}, (32 )and (33 ) will reduce to the standard Fourier
series analysis of uniformly spaced arrays.

7. SUMMARY

In this paper the published research vrork in nonuniformly spaced
antenna arrays has been summarized to date, Four new methods for

22
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synthesis of nonuniformly spaced antenna arrays for a given radiation
pattern have been suggested: i '

. A
I. The mechanical quadratures method, developed recently by
Bruce and Unz?3' %% and independently by Lo? % is summarized,

1 The eigenvalues method, where the positions of the elements
are given as eigenvalues of a transcendental equation,

II1. The expansion method, which involves the inversion 6f ma~=
trices in order to find the currents of the elements.

IV. The orthogonalization method by Schiidt's procedure.

In methods I and II the positions of the elements are predetermined
by the weight function involved (method I), or by the position of the
innermost element (method II), In methods III and IV the array ele-
ments are first arbitrarily distributed (in accordance with the pre-
requisites, e.g. , broadbanding) and then the current distributions in
the elements are determined, Methods I and III will involve in general
the inversion of a matrix, while in methods II and IV this is avoided.

An exponential-decay radiation pattern is suggested and used as an
example in the above methods. Its main advantage in the present syn-
thesis is that the definite integrals .nvolved may be approximately
evaluated explicitly, and thus simplify the numerical work. This
directive exponential pattern could also be used for electronic scanning®
problems in the form:

-a% sin% (8 ~vy)

'( 35 ) F(8-v)=e cos[2bsin (8- 1vy)]

where vy = y(t) is the angle direction in which the radiation pattern will
have a maximum and y(t) is a function of time, The above methods

1 could be modified slightly in order to calculate the required current
distribution by numerical integration. The linear r.ase delay case for
scanning may be found as a particular case under certain approximations.

Some numerical work using the above methods has been done, and
it will be published in the future together with additional numerical work
and comparisons between the four methods of synthesis, with regard to
the best approximations,

.23
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Sharp® and Willey3® suggested methods of design of linear and
planar arrays in order to reduce the number of the elements required
for a specific radiation pattern, Ishimaru®® has recently suggested
the use of the Poisson's sum formula for the design of nonuniformly
spaced arrays, His method is useful in treating nonuniform arrays
with large number of elements and unequally spaced arrays on curved
surfaces,

It is hoped that by usiﬁg the synthesis methods suggested by the
author in the present paper and others, the design of the nonuniformly

spaced arrays will become simpler and their use more generally
accepted,

24
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APPENDIX

In the following we will extend the oi‘-thbg‘onalirzation process of
Schmidt, as given by Kantorovich and Krylov, *? to a set of complex

- functions.

Liet there be given an infinite system of complex functions,
(A1) erfa), ez (w),
defined and continuous in the interval (a, b). We can exclude from the
given system of functions those that represent linear combinations of
the preceding ones, since by their nature they do not extend the sys-

tem. Let us now carry through the orthogonalization of the system..
(A-1), i.e., let us now construct the orthonormal system of functions

(A-2)  y, (a), ¢ (@) -

such that

b
@ oy wan = gy
Y a

where 62 ie the Kronecker delta, and w:;l(u) is the compl*eic conju~
,m

gate function. Each function of Eq. (A-2) is to represent some linear
combination of the functions of system (A-1), i.e., ¥, (u) will have the
form: ‘

(B-4)  yu=al oy +af o+ 2 ()

Let us carry out this orthogonalization step by step. The first function
¥, (1) must have the form ¢ 3 (u).

Deétermining the constant ¢ from the condition
P
Y i le) gi(u) du =1

“a

- 25
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we find

. , 2! (u
(A=5) gy (u) = : .
B o1 (8 o (@) du J

Let us assume that the first n functions ¢, (u), ¥z (u), *** Wn(u) have
been determined. The function zl/n + l(u) must be a linear combination

of these and the function ¢, . ;(u) in the form:

C(A-6)  yg(a) = e () *’Cz Vo ()t te yotu) be oy 41 (u) .

Weé determine the constant ci (1 =1, 2, *** n) from the conditions of
orthogonality of y +1(u)t to ¢y (u), ¢, (@) *** ¥, (u)} multiplying Eq. (A-6)

by ¥* (1) and integrating we obtam, using the orthogonality and normality
cond11t1ons'

b
. g - ofie. — : ¥
(A=7a) ¢ +c Sa op +1(0) YF(u)du =0,
Similarly, by multiplying by zpr (u) and integrating:
b
(A=7b) c5 + cS:a ¢n+1(u) 'P: (u)du=0,
and so on.: Finally we obtain
~ b
(A=Tc) c_+c S on41(@P¥ (updu=0 .
a

Substituting t:l » €z 7 N from Egs. {A-~7) into Eq.. (A=6) one obtains:
, z | b B
(A-8) 44 () =¢ l}n 1l - L o S‘ *n+1 '(“)#”5-‘(‘3).:4“)"1115‘ ('uEl "
' . L J=1 va ' : ,

26
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The constant c.can be determined from the normahzatmn § ¢n+1 Wn*l du-l

Using this, the final result w111 be:

n
n+1(u) }
| {S: n+1(u)

1

S" +1¢ du > A {(u)
(A-9) ) wn +1(u) = ! .
~ N DV

a

(
<

u‘!\/]:j

where |A[? = AAx,

By means of Eq. (A-9) the functions y, (u), ¥, (u) -+ Vi +1 (u) may be found

in succession by cascade procedure,

After having constructed the orthonormal system, one .can write,
for any arbitrary function f(u), its series:

(A-10a) f(u) = E An wn (u)
n=l

where the coefficients An may be found by using Eq. (A-3) to be

b

(A~10b) A=\ fu)y*x@)du
n a n

It is, of course, generally impossible to guarantee the convergénce of the
series in (A-10a). It would be, therefore, more correct to say that this
series corresponds to the function f(1) rather than is equal to it.

Substituting Eq. (A-4) into Eq. (A-10a) one obtains:

(A-11) f(m)*Y %( )m (u)+a§ )¢z(u)+' " ( o, (1) ]

nl

f(u) is written in terms of combination of the original nonorthogonal set,
¢,(u) .

27
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